113 Class Problems: The Orbit-Stabilizer Theorem

1. Let a group G act on a set S. Prove that $Stab(x) \subset G$ is a subgroup. Solution:

•
$$e(x) = x = i$$
 $e \in Stab(x)$
• $f, g \in Stab(x) \Rightarrow (f \times g)(x) = F(g(x)) = F(x) = x \Rightarrow f \times g \in Stab(x)$
• $g \in Stab(x) \Rightarrow g(x) = x \Rightarrow g^{-1}(x) = g^{-1}(g(x)) = (g^{-1} \times g)(x) = e(x) = x$
 $\Rightarrow g^{-1} \in Stab(x)$

2. Let a group G act on a set S, where |G| = 35 and |S| = 4. Prove that the action is trivial. An action is trivial if g(x) = x for all $x \in S$ and $g \in G$.

The action is $6n_{1}v_{1}al \Rightarrow |0rb(x)| = 1 \quad \forall x \in S$ $0rb(x) \subset S \Rightarrow |0rb(x)| \quad could potentially be <math>1, 2r \leq ar \leq 4$ $0rb(x) - Stabilizer \Rightarrow |0rb(x)| ||G| \Rightarrow |0rb(x)| |3S$ $\Rightarrow |0rb(x)| = 1 \quad \forall x \in S$ $\Rightarrow Action is 6rvid.$